
Leverage DXL to
Overcome Web

© 2007 Wellesley Information Services. All rights reserved.

Overcome Web
Browser Rich Text
Limitations

Lance Spellman
Workflow Studios

What We’ll Cover …

• Delivering Rich Text to the Web

• Exploring workarounds for rendering Rich Text

• Understanding the DXL output of Rich Text

• Creating a DOM object from DXL text

• Transforming DXL to HTML via XSL Transformations

• Wrap-up

The Specific Problem to Be Addressed

• Users create Notes documents with Rich Text content

• The content needs to be presented with 100% fidelity on
the Web

• The documents (or at least the Rich Text) will NOT be
edited on the Web, just viewed

3

Issue

Usage Scenarios:

•Web sites

•Documentation databases

•Policies and procedures

How Does Domino Deliver Rich Text to the Web?

• Notes stores Rich Text in an internal format of
Composite Data (CD) records

� CD records are streams of data structures with standardized
headers for the type of record and the number of bytes it uses

• When a browser makes a Web request, the HTTP task
asks Domino to convert the CD records to HTMLasks Domino to convert the CD records to HTML

� In this conversion process, most elements in a Rich Text field
convert well

� However, there are some elements that either do not convert
well or do not convert at all

4

What Rich Text Elements Does Domino Have Trouble With?

• Tables

� All table borders are applied universally, regardless of
individual cell border settings

� Borders are shown as 4px ridges

� Cell padding is ignored

� Table cells are divided evenly

5

� Table cells are divided evenly

� Wrapping text around the outside of the table is not supported

What Rich Text Elements Does Domino Have Trouble
With? (cont.)

• Inline Pictures

� Text wrapping, or “float,” isn’t maintained correctly

� Picture captions are lost

� Text will be pushed down below the picture

� Text will be jammed up against the picture

• Bullets and Numbered Lists

6

• Bullets and Numbered Lists

� Lists begin with an extra paragraph break

� All lists are indented an extra indent in the browser

Demonstration: How Domino Handles Rich Text on the Web

Domino default
rendering of
Rich Text toRich Text to

the Web

Rich Text Input with the Notes Client

2nd row starts

Image floats
right of text

2nd row starts
immediately

Table borders
of varying
thickness

Cell padding

Picture
caption

Rich Text Rendering by Domino to Browser

Table rows are
equally spaced

Cell padding
is NOT

observed

9

equally spaced

Table borders
are all visible

and set to
ridge style

Picture
caption

?

Paragraph
wraps

incorrectly

What We’ll Cover …

• Delivering Rich Text to the Web

• Exploring workarounds for rendering Rich Text

• Understanding the DXL output of Rich Text

• Creating a DOM object from DXL text

• Transforming DXL to HTML via XSL Transformations

• Wrap-up

Exploring Workarounds

• Domino automatically renders Rich Text on-the-fly per
request

• You can:

1. Alter the stored Rich Text so that Domino can supply a more
faithful rendering at runtime

2. Fix the rendering on-the-fly by supplying an alternate 2. Fix the rendering on-the-fly by supplying an alternate
rendering engine that is called by a DSAPI filter at runtime

3. Fix the rendering after the fact via JavaScript, CSS, or AJAX
methods

4. Provide alternate content for Domino to supply in place of
the Rich Text rendering

11

Workaround 1 — Alter the Stored Rich Text, Attempt 1

• Add HTML-specific properties in the properties box to
overcome Domino rendering

• Lots of elements support additional HTML properties:

� Paragraphs

� Images

� Tables� Tables

12

Setting HTML Properties to Fix Cell Padding

• Setting a CSS padding style to achieve cell spacing
doesn’t work

IE shows no
change

whatsoever

13

Firefox works,
but exposes
table border

problem

Workaround 1 — Alter the Stored Rich Text, Attempt 2

• Don’t let Notes store the Rich Text as CD records and
don’t let Domino render it on-the-fly

• At document save, store the content as HTML/MIME

14

Store Contents as HTML and MIME

• For Rich Text fields, there is a
field design property to
“Store contents as HTML and
MIME”

� On document save, instead of
saving Rich Text content in CD
record format, Notes
immediately performs an

15

immediately performs an
HTML/MIME conversion and
saves the content that way

� The conversion process in
storing content as HTML/MIME
is not the same as that used by
Domino to render Rich Text CD
records to HTML

Converts to HTML/MIME on document
save. Results are MUCH WORSE!

Potential Workaround Methods

• Add HTML-specific properties in the properties box to
overcome Domino rendering

• Bypass Domino rendering by setting the Rich Text field
property to store content as HTML/MIME

• Intercept Domino rendering of HTML via a DSAPI filter
and take over renderingand take over rendering

16

Browser Rendering of Content Stored as HTML/MIME

Wrap
properties for

picture are

17

Attachment has
moved out of

the table

picture are
completely lost

Table size is no
longer fixed

width, but has
been converted
to page width

Browser Rendering Now Closely Matches Notes?!?

• That’s a joke in case you missed it

� When viewing the content in a Notes client and in a browser,
the results will look very similar

� The problem is BOTH clients now render very poorly, if
consistently

�The author will see significant change in the document

18

from when the document is saved to the next time he
opens it

Demonstration: Saving Rich Text Content as MIME and
Viewing It

Saving RT
content as content as

MIME/HTML

Workaround 1 — Alter the Stored Rich Text, Attempt 3

• Continuing with the “Store Contents as HTML/MIME”
theme, alter the stored HTML/MIME after the document
is saved

� With this approach, the generated HTML is saved in the
document and, theoretically, the known issues can be
accounted for, corrected, and the document re-saved

20

Issues with Fixing Stored HTML/MIME

• Once the Rich Text is saved, there is data loss

� It’s unclear what the author actually intended

• Therefore, any fix that’s applied would be a best-guess
and would still not render the content faithfully

21

Workaround 2 — Fix the Rendering On-the-Fly

• Do you have any idea how difficult this would be?

• Deep knowledge of the following is required:

� Architect level knowledge of Rich Text data structures

� Highly competent C programming skills

� Lotus Notes C API

� DSAPI and HTML libraries� DSAPI and HTML libraries

� HTTP protocol handling

� HTML/CSS construction

22

I am a highly paid (I wish) professional.
Please, do not try this at home!

Workaround 3 — Fix the Rendering After the Fact

• This would involve adding a JavaScript function to the
Web page, probably invoking an AJAX library

• Domino would send the page to the browser

• The JavaScript code would have to compare the
delivered (and possibly hidden) HTML with the original
Rich TextRich Text

• Accessing the Rich Text would have to be done by an
agent/servlet

• And so on …

23

Tedious, and more importantly,
performance would be awful

Caution

Workaround 4 — Provide Alternate Content via DXL

• Similar in nature to the idea of storing Rich Text content
as HTML/MIME

• However, rather than trying to fix the errors introduced
by storing Rich Text content as HTML/MIME, bypass it
altogether

• Allow the document to save the Rich Text• Allow the document to save the Rich Text

• Post save, read the Rich Text and create your own HTML
representation and save it to the document

• When serving the document to the browser, provide the
custom HTML representation rather than the Rich Text
field (i.e., hide it)

24

The Secret Sauce is Domino Extensible Language (DXL)

• In the post-save process, the Rich Text is output as DXL

• All Notes design and data elements can be output as
DXL, a Domino XML data structure

• DXL can be transformed to HTML with an XSL stylesheet

• The resulting HTML is stored in the Notes document

• When a browser request is made, the HTML field is
shown for a speedy response

� Rather than the Rich Text field

• Handles styled text, tables, inline pictures, attachments

• Does not support bidirectional editing from both clients

25
Warning

Rich Text Transformed to Correct HTML on Post Save

Notes Document

Post-
Save

Output

DXL

Display to Web

26

Rich Text Block

Event

Transform
DXL to
HTML

HTML Block

Display to Web

What We’ll Cover …

• Delivering Rich Text to the Web

• Exploring workarounds for rendering Rich Text

• Understanding the DXL output of Rich Text

• Creating a DOM object from DXL text

• Transforming DXL to HTML via XSL Transformations

• Wrap-up

The Rich Text to DXL to HTML Process Overview

1. Design a form with a hidden from Web Rich Text field
and a hidden from Notes HTMLTransform field

2. QueryClose event (after a save) runs code to produce
DXL from the document

3. DXL is converted into a W3C DOM object

Code parses for <picture> elements and creates file 4. Code parses for <picture> elements and creates file
attachments

5. An XSL stylesheet is applied against the DOM object to
produce HTML output for the Rich Text fields

6. HTML is saved to the HTMLTransform field

28

Understanding the DXL Output of Rich Text

• DXL is a specific implementation of XML for Domino
data

• There is a DTD (Document Type Definition) for DXL that
defines the XML tags and structures for Domino

• DXL can be used for both data (documents) and design
(forms, views, agents, etc.)(forms, views, agents, etc.)

• Rich Text is just another type of Domino data where the
DTD has specified the output tags and structure for DXL

29

Demonstration: DXL Process — Rich Text to DXL to HTML

Overview of
the process

30

the process
for RT to DXL

to HTML

Inline Images in Rich Text and DXL

• An inline image is an image the user copied and pasted
into the Rich Text field

• When reading a document, the image is visible to
the user

� It’s not an attachment

• Notes saves an inline image in Rich Text as a Notes • Notes saves an inline image in Rich Text as a Notes
bitmap, a proprietary format

• When Rich Text is exported as DXL, the inline image can
be exported as either a Notes bitmap or a GIF

Code That Produces DXL Output

• Code can be LotusScript or Java

• By default, DXL export of inline images generates an
internal Notes bitmap format

� An export flag must be set to convert to GIF format

• By default, DXL export will contain a DOCTYPE
referencereference

� An export flag must be set to omit this output so that later
DOM processing will not fail

32

Code Example for DXL Export

try {

…

DxlExporter dxl = session.createDxlExporter();

…

// handle inline images in the Rich Text

dxl.setConvertNotesBitmapsToGIF(true);

Changes output of inline
pictures from Notes

bitmap to GIF

33

dxl.setConvertNotesBitmapsToGIF(true);

// turn DOCTYPE output off because DOM processor

// can't find the DOCTYPE declaration file and errors

dxl.setOutputDOCTYPE(false);

String docDxl = dxl.exportDxl(doc);

Exports document as

XML to a string

Reviewing DXL Export of Rich Text

• Every field on a document is represented in DXL with an
<item> tag

• For Rich Text fields, the next tag after <item> will be
<richtext>

34

See doc_dxl.xml for complete sample
DXL listing

Identifying the Rich Text Items in DXL Output

<item name='MIME_Version'>

<text>1.0</text>

</item>

<item name='body'><richtext>

<pardef id='1' align='center' leftmargin='1in'/>

Text Item

vs.

Rich Text Item

35

<pardef id='1' align='center' leftmargin='1in'/>

<par def='1'><run>

Rich Text Is Totally WICKED!

</run>

</par>…

The PARDEF Tag: Style Definitions for Paragraphs

• Pardef is shorthand for paragraph definition

• It contains style settings to apply to a paragraph

• Pardef has a unique ID attribute within the Rich Text
field scope to be referenced by paragraph elements

36

<pardef id='1' align='center' leftmargin='1in'/>

The PAR Tag: Paragraphs That Are Styled by DEF Attribute

• Par is shorthand for paragraph

� It is used to indicate that a paragraph has started within the
Rich Text field

• The def attribute is used to identify which paragraph
definition (pardef) styling is applied to this paragraph

<par def='1'>

37

<par def='1'>

<run>

Rich Text Is Totally WICKED!

</run>

</par>

PAR and PARDEF Equivalencies in HTML/CSS

PARDEF = CSS Selector

PARDEF ID attribute = CSS Class

PAR = HTML <p>

38

PAR = HTML <p>

PAR DEF attribute = HTML <p class=“”>

Sample PARDEF and PAR Equivalencies

Rich Text

<pardef id='1' align='center'
leftmargin='1in'/>

HTML/CSS

.par_1 { text-align: center;
margin-left: 70px; }

<par def=“1”> <p class=“par_1”>

39

DXL’s Representation of Inline Images

• Copying and pasting a picture into a Rich Text field
results in Notes saving the image in a proprietary format
called a Notes bitmap

• When producing DXL output, use the
.setConvertNotesBitmapsToGif method to produce a GIF
format output instead of a Notes bitmapformat output instead of a Notes bitmap

• The DXL output of the image is a Base64 encoded string

• Later, we’ll use code libraries to take the Base64 string
and save it as an external file

� This can be done with one line of code

40

DXL Output with setConvertNotesBitmapsToGIF(false);

<picture width='160px' height='135px' scaledheight='1.4063in'

scaledwidth='1.6667in' align='right'>

<notesbitmap>

lQAmAAAAAAAAAAAAAAABAAAAAAAAACsALwAIAAEA
CAABADAAAgCWAJUEAAAAAAAAAAAAAC8AgwTN

AM8EAR3OAM0ABQQMDgwOwgzCD8IMww4DJyMWzQDN
AAEExA7FDMQOBCcjGBbMAMUAAQvCJsMLyBXH

41

</notesbitmap>

<caption>Mikkel Heisterberg</caption>

</picture>

AAEExA7FDMQOBCcjGBbMAMUAAQvCJsMLyBXH

FAIeDsIYAhkcywDFAAImFMMawhPJB8USAgUMwhgDAxkc
ygDFAAEmwhoCEwfCCAIVDcMIBRoNCAAI

whPCB8IIAxUNCMISBQgSCAELxAkFBS0ZGA/CBgMPGRb
HAMUAAgsTwwcBCMISAgcIwhIDCA0Iwg3E …

Base64 encoded
content

DXL Output with setConvertNotesBitmapsToGIF(true);

<picture width='160px' height='135px' scaledheight='1.4063in'

scaledwidth='1.6667in' align='right'>

<gif>

R0lGODlhoACHAOcAAPD4+P///xgYICAgKLjAwKiwuBAYGB
AQGBggIOjw+BAQECgoMAgQEKCwsKiw

sCAoKLC4wCAoMDA4QPDw+HB4gDhASCgwMCgwOLC4u
Oj4+AgIEBggKBgYGDA4OLjAyAgICEBIUGhw

42

</gif>

<caption>Mikkel Heisterberg</caption>

</picture>

Oj4+AgIEBggKBgYGDA4OLjAyAgICEBIUGhw

eDAwODhAQKCosEBISEhQWFhgaCAgIDg4QGBocFBYYC
goKDAoKEhQUDgwKHiAiCggIGh4gOjw8EBA

SEhIUFBYWKi4uFhgYAAAADAoILDAwCgoIJB4aPDw8AAIC
DAwMKCwuDg4OHCAiBAYILDAyAAACKCo…

Base64 encoded
content of GIF that

can be saved to
a file

DXL’s Representation of Attachments

• An attachment is split into two elements

� <Attachmentref> which includes attributes for the actual file
name and the icon to visually represent the attachment

� <file> which includes attributes for the host type, and created
and modified dates

• The <file> element will be found inside the $File item as • The <file> element will be found inside the $File item as
a child of <object>

• If there are multiple file attachments, there will be
multiple <object><file> elements contained within
<item name=“$File”>

43

DXL for File Attachments

<attachmentref name='test.pdf‘ displayname='test.pdf'>

<picture height='47px' width='43px'>

<notesbitmap>

lQAmAAAAAAAAAAAAAAABAAAAAAAAACsALwAIAAEACA
ABADAAAgCWAJUEAAAAAAAAAAAAAC8AgwTN

AM8EAR3OAM0ABQQMDgwOwgzCD8IMww4DJyMWzQDNAA
EExA7FDMQOBCcjGBbMAMUAAQvCJsMLyBXH

<picture height='47px' width='43px'>

<notesbitmap>

lQAmAAAAAAAAAAAAAAABAAAAAAAAACsALwAIAAEACA
ABADAAAgCWAJUEAAAAAAAAAAAAAC8AgwTN

AM8EAR3OAM0ABQQMDgwOwgzCD8IMww4DJyMWzQDNAA

The attachment filename

44

EExA7FDMQOBCcjGBbMAMUAAQvCJsMLyBXH

FAIeDsIYAhkcywDFAAImFMMawhPJB8USAgUMwhgDAxkcyg
DFAAEmwhoCEwfCCAIVDcMIBRoNCAAI…

</notesbitmap>

</picture>

</attachmentref>

EExA7FDMQOBCcjGBbMAMUAAQvCJsMLyBXH

FAIeDsIYAhkcywDFAAImFMMawhPJB8USAgUMwhgDAxkcyg
DFAAEmwhoCEwfCCAIVDcMIBRoNCAAI…

</notesbitmap>

</picture>

Picture element is just the
icon used to display the
file attachment. It is not
the file attachment itself.

DXL for File Attachments (cont.)

<item name='$FILE' summary='true' sign='true' seal='true'>

<object>

<file hosttype='msdos' compression='none'
flags='storedindoc' encoding='none' name='test.pdf'>

<created>

<datetime>20051111T180304,3906</datetime> The attachment filename

The file element

45

</created>

<modified>

<datetime>20051111T180304,39-06</datetime>

</modified>

<filedata>

JVBERi0xLjQNCiXDpMO8w7bDnw0KMiAwIG9iag0KPDwgL0xl
bmd0aCAzIDAgUg0KICAgL0ZpbHRl…

Base64 encoded data of
the attachment

What We’ll Cover …

• Delivering Rich Text to the Web

• Exploring workarounds for rendering Rich Text

• Understanding the DXL output of Rich Text

• Creating a DOM object from DXL text

• Transforming DXL to HTML via XSL Transformations

• Wrap-up

Produce a W3C DOM Object from Rich Text DXL

• By creating a W3C DOM object from the DXL output, an
XSL transformation can be performed

• Inline <picture> elements can be parsed and saved back
to the document as file attachments

47

Create a DOM Object from DXL Text

• DXL from the earlier code example is simply an in-
memory string

• The DXL needs to be converted into a DOM object so
that it:

� Can be parsed to look for inline picture elements

� Can be transformed with an XSL stylesheet� Can be transformed with an XSL stylesheet

48

Code for Obtaining a DOM Document from DXL String

private org.w3c.dom.Document getDOMDoc(String dxl) {

try {

// Get Document Builder Factory

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

…

// Obtain a document builder object

DocumentBuilder parses
a String InputSource to
create a DOM Document

49

// Obtain a document builder object

DocumentBuilder builder = factory.newDocumentBuilder();

builder.setErrorHandler(new DefaultHandler());

// Parse the document and return it

StringReader reader = new StringReader(dxl);

InputSource source = new InputSource(reader);

return builder.parse(source);

…

Working with DXL Output of Rich Text Inline Image

• Remember, when Rich Text is exported as DXL, inline
images can be exported as either Notes bitmap or GIF

• The DXL image data is encoded as a Base64 string

• The string can be decoded and saved to a file

50

Base64 Libraries Allow Data to Be Decoded and Saved
to File

• With the Java library, saving the GIF data to a file is a
static call of a single method

//decode the base64 stream to a temp file

Base64.decodeToFile(base64Stream, fullfilepath);

51

Isolating the Inline Images and Saving Them to Files

Element element = domDoc.getDocumentElement();

// find all the inline images in the richtext fields get the picture nodes

NodeList pictureNodes = element.getElementsByTagName("picture");

int numOfPictures = pictureNodes.getLength();

…

for (int k=0; k<numOfPictures; k++) {

NodeList picChildren = pictureNodes.item(k).getChildNodes(); // gif tags

Collects all the
picture elements

52

NodeList picChildren = pictureNodes.item(k).getChildNodes(); // gif tags

int numOfNodes = picChildren.getLength();

for (int i=0; i<numOfNodes; i++) { // loop through the <gif> tags

Node binaryNode = numOfNodes.item(i).getFirstChild();

String base64Stream = binaryNode.getNodeValue();

…

String fullfilepath = filename; // filename set earlier in code

Base64.decodeToFile(base64Stream, fullfilepath);

}

}

Gets the Base64
data for the picture

as a String

Decodes and saves
file to filesystem

What We’ll Cover …

• Delivering Rich Text to the Web

• Exploring workarounds for rendering Rich Text

• Understanding the DXL output of Rich Text

• Creating a DOM object from DXL text

• Transforming DXL to HTML via XSL Transformations

• Wrap-up

Customizing HTML

• After the DXL has been converted to a DOM object, it
can be loaded into a Transformer with an XSL applied
to it

� The result will be customized HTML that meets author’s
expectations

• HTML is saved to the document and shown to Web • HTML is saved to the document and shown to Web
clients instead of the Rich Text field

54

Applying XSL to the DXL DOM Object

• The DOM object represents the whole document, not
just the Rich Text portion

� Due to the DXL export’s lowest granularity level being the
document

• XSL will ignore the rest of the Notes document and only
transform the targeted Rich Texttransform the targeted Rich Text

� XSL can be developed to generically look for any Rich
Text field

� XSL can be developed to look for a specific Rich Text field
identified by name attribute

55

See DXL2HTML.xsl for complete XSL
listing

Selecting the Rich Text Items to Apply Template Rules

<xsl:template match="d:document">

<xsl:apply-templates select="d:item"/>

</xsl:template>

<xsl:template match="d:item">

<xsl:apply-templates select="d:richtext"/>

</xsl:template>

56

</xsl:template>

<xsl:template match="d:richtext">

<xsl:apply-templates/>

</xsl:template>

Starts with document, looks for
items, selects only Rich Text
items, then applies remaining
templates to Rich Text items only

Sample Template for Handling Table Elements

<xsl:template match="d:table">

<table width="100%" cellspacing="0" cellpadding="0">

<xsl:attribute name="width">

<xsl:if test="@widthtype='fitmargins'">100%</xsl:if>

</xsl:attribute>

<xsl:attribute name="style">border-collapse: collapse;

<xsl:if test="string(d:border/@style)"> border-style:

<xsl:choose>

57

<xsl:choose>

<xsl:when test="d:border/@style='dot'">dotted</xsl:when>

<xsl:when test="d:border/@style='dash'">dashed</xsl:when>

<xsl:otherwise><xsl:value-of
select="d:border/@style"/></xsl:otherwise>

</xsl:choose>;

</xsl:if>

…

</xsl:template>

Template illustrates getting the
style attribute from the DXL and
converting that to CSS selectors

Implementing the XSL Transformation in Code

XSLProcessor xp = new XSLProcessor(new XML4JLiaison4dom());

StringReader xmlSource2 = new StringReader(docDxl);

StringReader xslSource2 =

new StringReader(xslProfile.getItemValueString("RTXSL"));

StringWriter sw = new StringWriter();

XSLTInputSource xs = new XSLTInputSource(xmlSource2);

XSLTInputSource xt = new XSLTInputSource(xslSource2);

XSLTResultTarget tout = new XSLTResultTarget(sw);

XSL is retrieved
from a text field in

The DXL
source

58

XSLTResultTarget tout = new XSLTResultTarget(sw);

xp.process(xs, xt, tout);

RichTextItem rt = doc.createRichTextItem("HTMLTransform");

rt.appendText(sw.toString());

from a text field in
a Notes document

DXL is transformed to HTML
and saved to the document

Demonstration: Live Debug Session for DXL2HTML.xsl

Visual Studio
Debugger for

59

Debugger for
DXL2HTML.xsl

What We’ll Cover …

• Delivering Rich Text to the Web

• Exploring workarounds for rendering Rich Text

• Understanding the DXL output of Rich Text

• Creating a DOM object from DXL text

• Transforming DXL to HTML via XSL Transformations

• Wrap-up

Extending the Idea …

• What if your boss says, “Move this app to SharePoint,
.NET, WebSphere, etc.”?

• First of all … boo! Integrate, not migrate!

• But if you must, use the DXL export process to get Rich
Text and convert it to HTML and save it in the new
systemsystem

61

Acknowledgements

• Much of the work shown here is a result of the dedicated
effort of David Bockes at Workflow Studios

• I claim some of the inspiration, he provided much of the
perspiration

• In particular, the efforts in developing the XSL
stylesheet are entirely his doingstylesheet are entirely his doing

62

Resources for Working with Base64 Encoded Data

• There are free LotusScript and Java libraries for
encoding and decoding binary data as strings

• The Java library used in the sample db is from
http://iharder.net/base64 by Robert Harder. It is a
comprehensive and widely used library.

• For reference, the resources section also includes a • For reference, the resources section also includes a
LotusScript class library from Johan Kanngard at
http://dev.kanngard.net/Permalinks/ID_20030324233829.
html based on work from Julian Robichaux.

63

See Script Libraries in dxl_sample.nsf
for both Java and LotusScript libraries

Rich Text Handling for Free Resources

• Genii Software’s CoexEdit for bidirectional Rich Text
editing

� www.geniisoft.com/showcase.nsf/CoexEdit

• Proposion Software’s Portal Migrator, which handles
Rich Text conversion to the .NET platform

� www.proposion.com

64

� www.proposion.com

7 Key Points to Take Home

• Domino’s rendering of Rich Text to the Web requires
alternatives for 100% rendering

• Storing Rich Text as HTML/MIME does not solve the
problem, it makes it worse

• The complete data structure of a Rich Text field is
available as XML when using DXL Export

65

available as XML when using DXL Export

• Inline images can be extracted from Rich Text DXL and
saved as file attachments

• XSL can be used to transform the DXL into HTML

• This solution is one-way only … from Notes to Web

• Use this approach to move Rich Text to other platforms

Your Turn!

66

Questions?

How to Contact Me:

Lance Spellman

lance.spellman@workflowstudios.com

